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Abstract

An analysis is given for fully developed thermal transport through a wall-bounded turbulent fluid flow with constant
heat flux supplied at the boundary. The analysis proceeds from the averaged heat equation and utilizes, as principal
tools, various scaling considerations. The paper first provides an accounting of the relative dominance of the three
terms in that averaged equation, based on existing DNS data. The results show a clear decomposition of the turbulent
layer into zones, each with its characteristic transport mechanisms. There follows a theoretical treatment based on the
concept of a scaling patch that justifies and greatly extends these empirical results. The primary hypothesis in this devel-
opment is the monotone and limiting Peclet number dependence (at fixed Reynolds number) of the difference between
the specially scaled centerline and wall temperatures. This fact is well corroborated by DNS data. A fairly complete
qualitative and order-of-magnitude quantitative picture emerges for a complete range in Peclet numbers. It agrees with
known empirical information. In a manner similar to previous analyses of turbulent fluid flow in a channel, conditions
for the existence or nonexistence of logarithmic-like mean temperature profiles are established. Throughout the paper,
the classical arguments based on an assumed overlapping of regions where the inner and outer scalings are valid are
avoided.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Convective heat transfer from surfaces beneath a
flowing fluid impact a large number of technologically
important applications [1,2]. Of course, if the flow is
turbulent, the rate of this heat transfer is significantly
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augmented relative to the laminar flow condition [2]. A
substantial body of evidence [3] points to important con-
nections between the mechanisms for this enhanced rate
of heat transfer and those affecting momentum transport
that, for example, also underlie the enhanced surface
shear stress in such flows. These connections between
momentum and heat transport provide a level of justifi-
cation for the popular analogy-based correlations often
employed in practical engineering computation strate-
gies, e.g., [1,2]. At perhaps an even more pervasive level,
ed.
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Nomenclature

Qw wall heat flux
us friction velocity
Pr Prandtl number, Pr ¼ m

a
U+ inner normalized mean streamwise velocity,

Uþ ¼ U
us

r(g) normalized mean velocity, rðgÞ ¼ U
UB

rr(g) rescaled r, see following (17)
Pes Peclet number, Pes = PrRes
Res Reynolds number, Res ¼ dus

m ¼ dþ

Lh
b hierarchy of layers
T inner normalized turbulent thermal flux,

T ¼ hvþ h
hs
i

Tb adjusted turbulent thermal flux, defined in
Eq. (22)

T b
m peak value of Tb

y+ inner normalized distance from wall,
yþ ¼ yus

m
yr new inner normalized distance, yr ¼ g

r2

yrm(b) location of T b
m

b a small number, introduced in (22)
H+ inner normalized mean temperature
W renormalized temperature, W ¼ U

r2

g outer normalized distance, g ¼ y
d

r2 maximum value of U
a molecular thermal diffusivity
d channel half height
hs friction temperature
qm mass density
Hw wall temperature
U normalized mean temperature, U ¼ Hw�H

Peshs

Uc centerline value of U
� small number in the momentum field analy-

sis, �2 ¼ 1
dþ

+ quantities normalized by sw, Qw, q and m

m maximum location or value
^ mesoscaling and hierarchy scaling, e.g., bT :

mesoscaled turbulent thermal heat flux
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these connections also often constitute part or all of the
conceptual framework for describing the physics of
turbulent heat transfer.
Somewhat contrary to such notions, however, is the

considerable body of evidence indicating that turbulent
scalar fields can exhibit behaviors distinct and neither
intuitively connected nor rationally predictable from
an understanding of the momentum field alone [4]. Rel-
ative to general heat transfer prediction, these observa-
tions would seem to indicate that momentum and
scalar transport are more tenuously (or at least more
subtly) related than the popular analogies might lead
one to believe. One of the present objectives is to more
clearly elucidate the relative importance of the underly-
ing mechanisms for turbulent heat transfer near walls,
their scaling behaviors and their connections to the fluid
dynamical mechanisms.
The most common point of departure for addressing

the problem of turbulent heat transfer near walls in-
volves simultaneous consideration of the appropriately
simplified, once-integrated, time averaged, differential
equations describing the conservation of linear momen-
tum and thermal energy, e.g., [2,5]. Of course, the pro-
cess of time averaging yields the classical closure
problem(s) in which the momentum and energy equa-
tions are indeterminate owing to the presence of the
kinematic Reynolds shear stress, huvi, and turbulent
heat flux (to be more accurate, turbulent temperature
flux), hvhi, respectively. Attempts to close these equa-
tions have invoked various phenomenological models
[3,6,7]. Regarding the efficacy of such approaches, the
recent efforts of Churchill and his co-workers [8–10]
are particularly noteworthy. In these studies they invoke
a novel local normalization of the Reynolds shear stress
and turbulent heat flux. Significantly, consideration of
the aforementioned, once-integrated, forms of momen-
tum and energy equations reveals rigorously defined
functions for the eddy viscosity, mixing length and tur-
bulent Prandtl number in terms of these locally normal-
ized functions. Furthermore, Churchill et al. show that
normalization of the local turbulent heat flux by the to-
tal local heat flux (or similarly, the Reynolds stress by
the total shear stress) leads to an attractive framework
for constructing accurate correlating equations (i.e.,
curve fits) having considerable applied utility.
Owing to their implicit, and sometimes explicit,

empiricism, however, these and other similar methodol-
ogies do not optimally serve the present objectives, since,
for example, the connections between the functional
form of any given correlating equation and the true scal-
ing behaviors describing the underlying transport mech-
anisms are not rigorously established. Perhaps even
more significantly, these (and most other approaches)
begin with the once-integrated form of the equations.
Through an analysis of the actual mean momentum bal-
ance (the terms of which comprise stress gradients rather
than stresses), Wei et al. [11] have revealed an alternative
physical/theoretical framework for describing the struc-
ture of wall-bounded flows. This framework includes a
structure for such flows that differs considerably from
the nearly universally accepted sub-, buffer, logarith-
mic and wake layer structure. In doing so, it also, for
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example, unambiguously reveals that viscous forces af-
fect dynamics much farther into the flow from the wall
than previously believed. Furthermore, this framework
has provided the impetus for follow-on studies [12–15]
that explore in detail many scaling considerations and
implications for physical models. More broadly, these
efforts clarify that the physical/mathematical interpreta-
tions of the unintegrated form of the mean momentum
balance are directly associated with the mechanisms
describing the time rate of change of mean momentum;
while the first integral of this equation has a distinctly
different interpretation, describing the mechanisms asso-
ciated with the contributions to the flux of momentum.
The present study initiates the analogous exploration

of the fundamental behaviors of turbulent heat transfer
in wall-bounded flows by following the same strategy
employed by Wei et al. [11] and subsequent papers in
their study of mean flow dynamics. Specifically, the pres-
ent effort begins by using available high resolution data
to examine the behavior by which the unintegrated form
of the mean energy equation is balanced. From this the
physical layer structure of the thermal energy field is
found. Further multiscale studies, based on the concept
of scaling patches, are pursued with the object of con-
structing a picture of its scaling behaviors relative to
variations in Reynolds number and/or Peclet number.
In contrast, it is relevant to reiterate that past theo-

retical approaches to turbulent heat transfer have largely
been based on hypotheses designed to close the Rey-
nolds averaged equation for the mean velocity and mean
temperature, or on dimensional considerations. As sta-
ted by Perry and Schofield, ‘‘The physical basis of the
closing hypotheses is of limited soundness, and the ulti-

mate success of this approach seems doubtful.’’ [16].
Therefore it is rational to try another approach and to
ascertain the scaling behaviors of turbulent heat transfer
as revealed solely by an analysis of the equations. Of
course, it should not be expected that these arguments
alone will yield a complete solution of the problem.
However, recent studies [11–15] of the averaged momen-
tum equation in analogous contexts show that scaling
properties and much flow physics can be found through
such methodologies.
Section 2 is devoted to deriving and explaining the

basic averaged heat equation and boundary conditions
employed in the paper for fully developed heat trans-
port. Especially noteworthy is the non-traditional tem-
perature unit (7) found to be appropriate. The flow is
shown in Section 3 to be partitioned into four zones
according to the relative dominance of the three heat
transport terms in the basic energy balance equation de-
rived in Section 2. An extensive multiscale analysis of
the scaled heat equation is begun in Section 4. This anal-
ysis reveals strong Peclet number, Pes, dependencies.
When Pes � 1, there is only one appropriate scaling of
the variables. In particular, distance from the wall is
scaled by the usual outer scaling, even near the wall,
and temperature is measured by the new unit just men-
tioned. When Pes 	 1, however, the magnitude of the
centerline scaled temperature, relative to the wall tem-
perature, serves as the proper small parameter with
which to build asymptotics for inner, outer, and meso-
layers. The magnitude of this temperature scale depends
monotonically on Pes, for fixed Reynolds number. Pre-
vious analysis of the flow structure of turbulent channel
flow provides a paradigm for this construction. Finally
Section 5 is devoted to extending that paradigm to ac-
count for a continuum of scaling patches, in addition
to the three already studied, which altogether cover a
good part of the channel cross-section. It is in Section
5 that the relevance of this continuum of layers to the
question of the logarithmic nature of the mean temper-
ature profile is brought to light.
2. Statement of the problem

2.1. The heat equation

A detailed derivation of the heat transfer equation
for turbulent wall bounded flows appears, for example,
in the books by Monin and Yaglom [5], Landau and Lif-
shitz [17] and Kays and Crawford [2]. Since the present
paper relies heavily on the analysis of the mean heat
equation, it is appropriate to sketch the derivation
briefly. For incompressible flow with constant properties
and with the heat transfer effect of viscous dissipation
neglected, the instantaneous energy equation is given by

o~h
os

þ ~uj
o~h
oxj

¼ a
o2~h

oxj oxj
; ð1Þ

where ~h and ~uj are the instantaneous temperature and
velocity, s is time, and a is the molecular thermal diffu-
sivity. The dimensions of a are the same as those of the
kinematic molecular viscosity m, ½L2s �. The Prandtl num-
ber is defined by the ratio, Pr ¼ m

a. The heat equation
has a form very similar to that of the momentum equa-
tion, except there is no pressure term in the former.
To obtain the averaged heat equation, one decom-

poses the variables ~h ¼ H þ h; ~uj ¼ Uj þ uj into mean
and fluctuating parts and takes the average of (1); see
e.g. [5]. Specializing to 2D steady channel flow with
coordinates (x,y) and fluctuation velocity components
(u,v) gives

U
oH
ox

¼ a
o2H
oy2

� ohvhi
oy
. ð2Þ

Traditionally the friction temperature (Kader et al. [3]
called it the heat flux temperature) is defined by

hs ¼ Qw
ðqmCpÞus

, where Qw ¼ �k oH
oy

���
w
is the heat flux at the

wall, us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sw=qm

p
is the fluid flow friction velocity, sw
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is the wall shear stress, qm is the mass density, and Cp is
the specific heat. The molecular thermal conductivity, k,
is related to a by a ¼ k

qmCp
. The wall Reynolds number,

Res, which is the same as the inner normalized channel
half-width dþ ¼ us

m d, will play an important role in the
following analysis. The same will be true of the wall Pec-
let number

Pes ¼ Prdþ. ð3Þ

It will always be assumed that Res = d+	 1.
The prescribed heat flux at y = 0 results in the

boundary condition,

Qw
qmCp

¼ �a
oH
oy

����
w

. ð4Þ
2.2. The fully developed state

Fully developed heat transfer, governed by (2) with
constant heat flux Qw prescribed at the wall y = 0 for
x > 0, is approached at positions sufficiently far down-
stream, i.e. for large values of x. This state is character-
ized by the x-derivative of the temperature being a
positive constant, independent of both x and position
in the channel. It is analogous to steady fully developed
turbulent Poiseuille flow through a channel, wherein the
x-derivatives of all averaged quantities are 0. The value
of the constant in the present case can be determined by
applying an energy balance to a section of the channel. It
turns out to be ushs

dUB
, where UB ¼ 1

d

R d
0 UðyÞdy is the bulk

mean velocity. Thus, in thermally fully developed flow,
the temperature is a linearly increasing function of x
(therefore unbounded), with the rate of increase given
by ushs

dUB
, i.e., oH

ox ¼
oHw
ox ¼ ushs

dUB
, for each x and y, where Hw

is the temperature at the location on the wall with the
same value of x. The temperature and turbulent heat
flux profiles under fully developed conditions will be of
primary concern.

2.3. Normalizations

Conventionally the velocity, length, and temperature
units us,

m
us
and hs are used to normalize the averaged

heat equation. This results in the usual inner-normalized
mean velocity Uþ ¼ U

us
and distance yþ ¼ y

m=us
from the

wall. The usual inner normalized heat equation derived
from (2) is,

0 ¼ � 1
dþ

Uþ

Uþ
B

þ 1
Pr

o
2Hþ

oyþ2
þ oð�hvþhþiÞ

oyþ
. ð5Þ

Similarly, using the channel half height d to normalize
the distance, g ¼ y

d, one obtains the usual outer normal-
ized heat equation:

0 ¼ �Uþ

Uþ
B

þ 1

Prdþ
o2Hþ

og2
þ oð�hvþhþiÞ

og
. ð6Þ
A considerably more revealing alternative, however, is
to use the units us, d, and hsPes = hsd

+Pr. This choice
recovers the same inner velocity and outer normalized
distance g, but a new temperature variable U, which will
be referenced to the wall temperature, Hw in order to
more accurately incorporate the thermally fully devel-
oped condition. In all, the new variables (U+,g,U) are
defined by

U ¼ usUþ; y ¼ dg ¼ mdþ

us
g;

U ¼ Hw � H

dþ Prhs
¼ Hw � H

Pes hs
. ð7Þ

This locally defined temperature renders a self-preserv-
ing form for the temperature field. Let T ¼ hvþ h

hs
i

(in this expression, temperature is scaled differently
than in (7)). The fully developed condition implies
no x-dependence, so the variables U and T (see below)
will depend only on g. The result is

d2U
dg2

þ dT
dg

þ rðgÞ ¼ 0; ð8Þ

where rðgÞ ¼ UðgÞ
UB
.

The function r(g), being a scaled mean velocity pro-
file, also depends on d+; that dependence will not be dis-
played, because it plays a minor role in the following
development. This function is O(1) for all values of g ex-
cept in a thin turbulent wall layer. This property will be
important in what follows. Eq. (8) could be called an
outer normalized equation of heat transport; it differs
from the traditional outer formulation (6) and will be
our basic thermal energy balance equation for the ther-
mal transport problem.
Boundary conditions at g = 0 are

U ¼ 0; dU
dg

¼ 1; T ¼ dT
dg

¼ 0. ð9Þ

At the centerline g = 1,

T ¼ 0; dU
dg

¼ 0. ð10Þ

The second condition in (9) is the form that (4) takes in
the present units. The conditions (9) and (10) are not
boundary conditions in the usual sense of stipulations
which lead to a unique solution of some boundary value
problem. Rather (8), even under these conditions, is
underdetermined (one equation with two unknowns),
with no unique mathematical solution. The object here,
since there does exist a unique unknown physical solu-
tion, is to deduce important scaling properties that that
solution has.
Note that neither Eq. (8) nor the boundary condi-

tions (9) and (10) depend overtly on any parameter ex-
cept d+, and that dependence (through the function r)
will be of little consequence. However, while each of
the terms in (8) is formally O(1), there is no reason to
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expect that that is their actual magnitude, except for the
last term r(g), which is known to remain O(1) except in
the wall layer. Despite no explicit occurrence on Pes in
(8), that parameter is embedded therein; the variables
generally will depend on it, but in such a way that the
differential equation is satisfied identically. The present
task will be to try to make that hidden dependence expli-
cit, by means of further rescaling.

2.4. Comparison of momentum transfer and scalar

transfer

Thermal transfer and momentum transfer are closely
related, with H+ analogous to U+, Qw to sw, and various
other analogies among the parameters of the two prob-
lems. In this context, it is relevant to point out that in
engineering applications the �Reynolds analogy� is quite
often used when Pr = O(1). (Its deficiencies, at least for
other values of Pr, will be brought out in the current pa-
per.) Under the Reynolds analogy, in view of the simi-
larity of the basic equations, the temperature profile is
assumed to be the same as that of the velocity profile;
in particular, Hw�Hc

hs
¼ Uþ

c .
-4

-3

-2

0  50  100  150  200  250  300  350  400

y+

Fig. 1. Heat flux gradient ratio, ðd2U=dg2Þ=ðdT=dgÞ. (a) Low
Pes. (b) Pes 	 O(1). DNS data from Kawamura�s group [18]
and Kasagi�s group [19].
3. Principal layer structure

For comparative purposes, this section first briefly re-
views the traditional layer structure for developed wall-
bounded turbulent heat transfer. The physical layer
structure as prescribed by the relative magnitude of the
terms in (8) is then presented.

3.1. Established picture

The thermal wall layer for turbulent flow is tradition-
ally divided into four layers: the molecular transport
sublayer, the buffer layer, the logarithmic layer, and
the outer layer, with the same physical reasoning as
for the momentum wall layer [3,6]. The following facts
are noted: (i) In addition to the Reynolds number, the
thermal equations involve another parameter, Pes,
which makes the thermal case more complicated, (ii)
The extent of the �thermal buffer layer� is not as clear
as that of the �momentum buffer layer�, (iii) Kader pro-
vides Pr-dependent coefficients for the logarithmic layer
based mainly on fitting to the experimental data [6].

3.2. Revised principal layer structure

The present methodology ascertains an alternative
physical layer structure directly from the properties of
the terms appearing in the governing equation. There
are three terms in the mean heat equation (8), relating
to the production of heat due to molecular diffusion
transport, turbulent transport, and streamwise mean
advection (the former two are gradients of the respective
fluxes). These terms sum to zero to reflect energy conser-
vation. To estimate the relative magnitude of the terms,
Fig. 1 provides the ratio of the gradient of the molecular
diffusion flux to that of the turbulent transport flux:

a
d2H
dy2

� dhvhi
dy

¼

d2U
dg2

dT
dg

.

(1) Small or moderate Pes: As shown in Fig. 1(a), for
low Peclet number, the magnitude of the molecular dif-
fusion term j d2U

dg2 j is always larger than that of the turbu-
lent term j dT

dg j. It is especially worth noting that the
molecular heat transport is larger than the turbulent
heat transport in the �outer region� where the flow is iner-
tially dominated. Note also that dU

dg is larger than the tur-
bulent heat flux, T, across the whole layer for low Pes
(Fig. 2). This situation is quite distinct from the momen-
tum equation. For the momentum field, the diffusive and
turbulent contributions to the time rate of change of
momentum balance each other, out to a position near
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the peak in the Reynolds shear stress, while the turbu-
lent stress dominates the viscous stress beyond the buffer
layer. Therefore, for low Peclet number, the Reynolds
analogy is incongruous with the behavior of the terms
in the governing equation. For low Prandtl number,
however, as Reynolds number increases (see Fig. 1(a),
the case when Res = 640 and Pr = 0.025), the ratio plot-
ted approaches �1 in a certain region near the surface.
(2) Moderate or large Pes: As shown in Fig. 1(b),

there is a clear �1 ratio region. This �1 ratio region
grows outward with increasing Reynolds number, and
it moves inward with increasing Prandtl number. The
reasons for this are explained later in Section 4.4.
The behavior of the ratio of the two heat flux gradi-

ent terms, as shown in Fig. 1(a) and (b) indicate the
following layer structure for Pes moderate or large:

• Layer I:Molecular diffusion/mean advection balance
layer, where the molecular diffusion terms balance
the mean advection term, while the turbulence term
is not important. (Note that this sublayer is clearer
for low Pes data, as shown in Fig. 1(a).)

• Layer II: Heat flux gradient balance layer, where the
heat equation balance is essentially between the
molecular diffusion term and the turbulent transport
term (aforementioned �1 ratio layer).

• Layer III: Mesolayer, where all three terms are
important for the heat equation balance (except very
close to the peak value of T, where the turbulent flux
gradient crosses through zero and is negligible).

• Layer IV: Inertial layer where the heat equation bal-
ance is between the mean advection and the turbulent
transport term, while the molecular diffusion term is
negligible.
3.3. Layer extents

The physical extents of the thermal layer structure
shown in Fig. 3 are defined in a way similar to that
for the momentum layer structure [11], i.e., the end of

the gradient balance layer is defined as a d
2H
dy2

� �
=

� dhvhi
dy

� �
¼ �2, and the end of the mesolayer is defined

as a d
2H
dy2

� �
= � dhvhi

dy

� �
¼ 0:5. The curves in Fig. 3 are

based on the DNS data of Kawamura�s group1 [18]
and Kasagi�s group2 [19]. Due to the narrow range of
the Reynolds numbers (Res = d+ = 180, 395, 640), and
the range of Prandtl number (0.025 < Pr < 5), these
data, although suggestive, are inconclusive with regard
to asymptotic behavior. In Fig. 3, the layer extents are
quantified, in inner normalized distance, y+ = d+g, to
their upper boundaries and are plotted against Pes.
The data are for fixed Reynolds number (there are three
Reynolds number curves) , so Fig. 3 shows that as Pr in-
creases (or Pes increases in this case), layer II and layer
III move towards the wall.
4. Multiscale analysis

4.1. Goals, strategies, and observations

A ‘‘scaling patch’’ is a specified scaling of the vari-
ables g and T (see (8)) together with an interval of g-val-
ues in which that scaling is natural (see [12,13]). The
object of the following analysis is to explain and develop
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an approach to the determination of the structure of the
U and T profiles, based on the concept of scaling
patches. This is shown to be analogous to the analysis
in [12,13,11] of U+ and T profile structures for steady
turbulent (Couette and Poiseuille) flow through a chan-
nel. This correlates in part with the results described in
Section 3, especially in regard to the mesolayer, which
will be found to have its own ‘‘mesoscaling’’.
The strategy will be first to begin with the scaled form

(8)–(10) of the averaged differential energy balance and
boundary conditions. Under the normalization em-
ployed, all three terms of the differential equation have
nominal order O(1) and neither the differential equation
nor boundary conditions have any explicit parameter
dependence. Eq. (8) is similar in form to that which oc-
curs in the study of steady turbulent flow in a channel.
In fact, many of the tools used in the latter analysis find
application in the former as well. However, the thermal
problem has one extra parameter, Pr, in addition to d+.
This, it turns out, makes for an additional degree of
indeterminacy and difficulty.
Next, recognizing that the nominal order of a term

does not necessarily correspond to its actual order of
magnitude, a rescaling of the variables is undertaken
such that after terms of nominal order�1 in the result-
ing differential equation and boundary conditions are
discarded, the nominal order of each term in some part
of the channel (i.e., some scaling patch) coincides with
its actual order of magnitude. Because of the underde-
termined nature of the problem, this may involve some
examination of empirical data concerning the actual
magnitudes of terms. Data indicate that with the possi-
ble exclusion of a thin wall layer, the ratio of the molec-
ular diffusion heat flux gradient to the turbulent heat
flux gradient (ratio of the first to the second term in
(8)) depends strongly on Pes, even though Pes is not ex-
plicit in the energy balance Eq. (8). The analysis is based
on this property (as reflected in the hypothesis stated be-
low) as well as the supposition that the ratio is very large
when Pes � 1, and except in a wall layer, is very small
when Pes 	 1.
This approach allows construction of scaling patches

and deduction of the qualitative structure of the temper-
ature and turbulent thermal flux profiles.

4.2. Dependence of U and T on Pes

Before making hypotheses, it is useful to examine the
properties of U with DNS data. The Reynolds number
and Peclet (or Prandtl) number dependencies of U are
shown in Fig. 4. The dependencies of T on those two
numbers are shown in Fig. 5. The centerline values,
Uc, of U for different Peclet numbers are shown in
Fig. 6(a). All of these data show a general monotone de-
crease of U as Pes increases, d+ = Res being held con-
stant. This same trend, for the respective g-derivatives
of U, can be seen in Fig. 2. In the case of the second
derivatives, if one restricts attention to the outer region
in layer IV, the plots in Fig. 1 serve, to some extent, to
indicate the same monotone trend, because the numera-
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the analysis to follow.
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tor of the ratio plotted there is just the second derivative
in question, while the denominator is almost constant.
The data in Fig. 6 suggest that Uc! 0 as Pes ! 1
(Pr!1), and that Uc approaches an O(1) limit as
Pes ! 0 (Pr! 0).
It is relevant to note the Pes and Res dependence of

the centerline value of the ratio plotted in Fig. 1.
Fig. 1(a) shows that this value decreases with increasing
Res. Fig. 1(b) shows that when Pes is larger, the ratio is
very small, independent of Res. The monotone depen-
dence of U and its derivatives upon Pes suggests that
when Pes decreases, d

+ remaining fixed, the second term
in (8), dT

dg, decreases and the first term,
d2U
dg2 , increases. Of

course since the third term in (8) is always O(1) (both
nominally and actually), smallness of either of the first
two terms implies that the other is O(1). In view of this,
the following limiting behaviors are hypothesized:

Hypothesis. For fixed values of d+ and g, U is a
monotonic decreasing function of Pes, approaching 0
as Pes !1 and approaching an O(1) limit as Pes ! 0.
The same is true of dUdg and j d2U

dg2 j, except that the first
limit, namely as Pes ! 1, is only valid outside a narrow
wall layer near g = 0.



5292 T. Wei et al. / International Journal of Heat and Mass Transfer 48 (2005) 5284–5296
Immediate consequences of these hypothesized
behaviors are:
(a) For each fixed large d+, when Pes (or Pr) is small

enough, the second term in (8) can be neglected, result-
ing in a well-determined boundary value problem,

d2U
dg2

þ rðgÞ ¼ 0; ð11Þ

Uð0Þ ¼ 0; dU
dg

ð0Þ ¼ 1; dU
dg

ð1Þ ¼ 0; ð12Þ

whose unique solution can be written down, sinceR 1
0
rðgÞdg ¼ 1 : UðgÞ ¼ g þ

R g
0
ðs� gÞrðsÞds. This is

supported by the DNS data shown in Fig. 7, and is com-
patible with Fig. 1.
(b) For each fixed large d+, when Pes is large enough,

the first term in(8) can be neglected, except in a narrow
wall layer near g = 0. Outside the wall layer, there
results the approximate equation,

dT
dg

þ rðgÞ ¼ 0; ð13Þ

T ð1Þ ¼ 0; ð14Þ

which again has a unique solution.
The existence of an excluded wall layer in case (b) is

necessary in order to allow the boundary conditions (9)
at the wall to be satisfied. Rescalings will be necessary to
reveal the structure of U and T in that flow region.
Under the above hypothesis, when Pes is small en-

ough, we have approximate knowledge of the variables
U and T throughout the channel. Moreover, this is done
with a single scaling: the one that produced (8). There is
no other scaling needed for different ranges of the vari-
able g. Hence there is only one ‘‘scaling patch’’ [12],
and it covers the entire domain.
This is not true when Pes is large, i.e., the case for

which there exists a distinct wall layer. This case entails
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Fig. 7. U versus g. The low Pes number temperature profile is
close to the laminar temperature profile.
looking for the proper rescaling(s) in that layer. These
scalings will depend on Pes as well as on d+, both of
them large parameters.
The case when Pes is small shows a failure of the

Reynolds analogy. The solution has U = O(1), which
implies that the analogous inner scaled temperature dif-
ference Hþ

w � Hþ ¼ OðPesÞ, hence bounded indepen-
dently of Pes. The analog in turbulent channel flow is
the mean velocity U+, which attains values �C lnd+,
so it is not bounded.

4.3. Scaling framework

The primary unanswered question concerns the
structure of the wall layer (case (b) above), especially
its dependence on Pes. The approach here will be to
build on what is known about the channel flow problem,
specifically the framework established in [13,12]. The
limiting behaviors hypothesized in the previous section
will also be a guiding ingredient. The key to the analysis
will be the introduction of a new variable parameter r,
which is directly related to the magnitude of U and is
indirectly a function of Pes.
Case (a), i.e. (11) and (12) when Pes � 1, is not con-

sidered because the mean temperature field has no wall
layer. The initial focus is on the case when the first term
in (8) is small, at least in the outer region.
Define r by

r2ðdþ; PesÞ ¼ maxUðgÞ ¼ Uð1Þ.

Assume now that r � 1. We define the r-dependent
temperature variable W by,

U ¼ r2W; ð15Þ

so that W = O(1) near the center. This new temperature
variable is the same as the non-dimensional commonly
employed form W = (Hw � H)/(Hw � Hc). With this,
there exists a new outer equation

r2
d2W
dg2

þ dT
dg

þ rðgÞ ¼ 0. ð16Þ

This equation, with the attendant boundary conditions,
is entirely analogous to equations governing turbulent
channel flow [11]; in the latter case there is a small
parameter �, analogous to r in (16). We therefore follow
the lead of the inner–outer reasoning for [11]. This in-
volves defining a new inner variable yr by,

yr ¼ g
r2
. ð17Þ

This generates a scaled advection function of the inner
variable rr(yr) = r(g(yr)) = r(r

2yr).
From this the following inner form for the energy

balance equation is obtained,

d2W
dy2r

þ dT
dyr

þ r2rrðyrÞ ¼ 0 ð18Þ
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with boundary conditions W = T = 0 at yr = 0, and
(from (15), (17) and (12))

dW
dyr

ð0Þ ¼ r�2 dU
dyr

ð0Þ ¼ dU
dg

ð0Þ ¼ 1. ð19Þ

It would be desirable to quantify what the present for-
malism predicts regarding how r depends on d+ and
Pes (or Pr). For this, the DNS data of Fig. 6 provide
guidance.

4.4. The mesoscale and peak location

Eqs. (16) and (18) employ an outer variable g and a
r-dependent inner variable yr. As in the momentum field
[11], there will be a mesoscaled variable, valid near the
maximum of T, defined by

ŷr ¼ ffiffiffiffiffiffiffi
yrg

p ¼ g
r
. ð20Þ

Analogous to the channel turbulence problem, the loca-
tion of this maximum is at

yr ¼ yrm ¼ Oðr�1Þ; g ¼ gm ¼ OðrÞ ð21Þ

(these relations are equivalent to each other).
Fig. 8 clearly corroborates these estimates. In fact, it

indicates that gm is almost a linear function of r, for at
least Res = 180 (there are not enough data points to
judge, for the larger values of Res; no doubt any approx-
imate linear relation would have Res-dependent coeffi-
cients). Given that the location of the peak value of T,
measured in the outer variable g, is an increasing func-
tion of r, the above scaling hypothesis in turn suggests
that r2, a measure of the magnitude of U, increases when
Pes decreases (at least for Pes 	 1). Thus, overall, the
peak position as measured in g may be expected to be
a decreasing function of Pes. This is strikingly confirmed
by DNS simulation results in Fig. 5.
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5. A hierarchy of layers when Pes is moderate or large

The three scalings employed thus far, namely inner,
outer, and meso, constitute those appropriate for the
scaling patches associated with primary physical layer
structure (Fig. 1, Section 3.2). As with the momentum
field, however, there is much additional embedded struc-
ture. As typified in [12,13], the balance exchange argu-
ment leading to a mesolayer centered around the
maximum value of T can be generalized to show the
existence of a self-similar continuum of scaling patches,
one at the peak value of each of a family of adjusted
Reynolds stresses: each of which transforms the appro-
priately scaled energy balance to an invariant form.
The same can be done in the present case, since the prob-
lem formulation (16) and (19) is highly analogous. The
differences are now that (i) the small parameter is r,
whereas in the former case it was �, which had a different
physical meaning; and (ii) the convection term r(g) is not
the constant 1 (although it only deviates significantly
from 1 for small g). Structurally, these differences are
believed significant since they underlie the precise me-
chanisms by which analogies between the scaling behav-
iors for the momentum and temperature fields break
down. In what follows, the procedure for showing this
self-similar continuum of scales for the temperature field
will be explained briefly; especially relevant will be the
way of handling the nonconstancy of r.

5.1. The adjusted turbulent thermal fluxes

We proceed from (18), assuming that r is so small
that the graph of T(g) has a prominent peak. To dwell
somewhat on this issue, the outer approximation is ob-
tained from (13) and (14): T ðgÞ ¼ T outðgÞ �

R 1
g rðsÞds.

From the outer approximation one finds that the
function T behaves qualitatively like the Reynolds
stress: it rises to achieve a maximum near Tout(0) =
1(1 � Tmax = O(r)) at a point near the wall satisfying
(21), then diminishes monotonically to vanish at the
centerline.
To obtain the scale hierarchy, define a family of

adjusted turbulent thermal fluxes:

T bðyrÞ � T ðyrÞ þ r2
Z yr

0

rrðsÞds� byr ð22Þ

for an interval of values of b to be specified. Inserting
this into (18) yields

d2W
dy2r

þ dT
b

dyr

þ b ¼ 0. ð23Þ

The next observation is that near a peak value of Tb, the
rescaling of (24) below eliminates, in (23), any explicit
dependence on b. For a range of values of b, depending
somewhat on r as well as on d+, the function Tb(yr) will
have a strict local maximum at some point yr = yrm(b),
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also depending on Pes and d+. As in the channel flow
without thermal effects, the existence of a hierarchy of
scaling patches, Lh

b, can be derived, each one centered
around yrm(b). In the patch, the intrinsic scaling will
be given by the following differential transformation
from (dyr,dT

b) to ðdŷ; dbT Þ:
dyr ¼ b�1=2 dŷ; dT b ¼ b1=2 dbT ; yr ¼ yrmðbÞ þ b�1=2ŷ;

T b ¼ T b
m þ b1=2bT ; ð24Þ

where T b
m ¼ maxðT bÞ. This leads to

d2W

dŷ2
þ d

bT
dŷ

þ 1 ¼ 0; ð25Þ

which is free of any explicit parameter dependence. To-
gether with the satisfaction of certain conditions that en-
sure the compatibility of the scaling with known data in
a neighborhood of yrm(b), this parameter-free equation
is sufficient to verify the existence of a scaling patch,
Lh

b, for each b in the range specified. The details are
the same as those in [12,13]. The scaling given by (24)
is the correct one for the variables yr (hence by (17)
for g) and Tb in each scaling patch Lh

b designated by b.
However since T, rather than Tb, is the variable of inter-
est, it should be brought out that T will have the same
natural scaling in Lh

b. The details of showing this are
the same as in [13,12] and will not be repeated here.
This establishes the continuum of scaling patches;

combined with the principal inner-, outer-, and meso-
patches, it provides the structural context in which the
profiles of U and T exist.

5.2. Locations of the Tb(yr)

As indicated, the relative locations, in the channel, of
the members of the hierarchy of layers, Lh

b, coincide with
the locations of the maxima of Tb. These are not immedi-
ately known, because the function T is still unknown.
Knowledge of the locations yrm(b) provides an important
description of the length scales relevant to the heat trans-
fer mechanisms and their dependencies on Pes and d+. To
get information about the locations yrm(b), first set

AðbÞ ¼ � d
2bT
dŷ2

ð0Þ ð26Þ

the curvature of the rescaled adjusted turbulent thermal
flux profile evaluated at its peak location. This is an O(1)
quantity since the scaling used here is the correct one for
that location.
Now note from (22) and the fact that dT

b

dyr
ðyrmÞ ¼ 0

(since Tb attains a maximum there)

dT ðyrmðbÞÞ
dyr

¼ b � r2rrðyrmðbÞÞ. ð27Þ

Differentiate with respect to b to get, after some manip-
ulations and use of (26),
dyrmðbÞ
db

¼ ð�AðbÞb3=2 þ r2r0rðyrmðbÞÞÞ
�1. ð28Þ

In principle, if A(b) is known, (28) can be solved to give
yrm(b), the desired location, as a function of b, with an
integration constant C. If A is known only in order of
magnitude, this procedure will still provide yrm(b) in
order of magnitude.
To go further, the relation can be inverted to get b as

a function of yrm(b) and C. Next, one integrates (27) to
get T(yr) (with a second integration constant). Finally,
integrate (18) twice to get W(yr) (approximately), and
hence U from (15).

5.3. Conditions for logarithmic-like temperature profiles

It has long been recognized that the mean tempera-
ture profile (when Pes is moderate or large) exhibits a
logarithmic-like section [3,6]. The analysis now focuses
on the conditions under which such a profile will be real-
ized. In this regard, the simplest case is when A(b) is con-
stant and r is so small that the O(r2) terms in (28), (27)
and (18) may be neglected. For this case, straightfor-
ward calculations show that U = C1r

2 ln(yr + C2), and
hence from (17) a similar logarithmic-like function of g.
But when can one expect A(b) to be constant (or al-

most constant)? A similarity argument, as in [13,12] calls
for the approximate constancy of A(b) in the interior of
the scaling layer hierarchy, and the same argument also
applies here. Besides indicating conditions under which
the temperature profile is expected to be logarithmic-
like, the converse applies as well: if A is not constant,
or the terms in r2 cannot reasonably be neglected, then
the profile will not be logarithmic-like.
In this latter connection, it would be of interest to

know when the term r2r 0(yrm(b)) in (28) may be ne-
glected. For this, one might assume that r approaches
its maximum at the centerline logarithmically (approxi-
mately), and r 0 decays like 1yr

. Therefore that term might
be negligible in comparison with the other term at loca-
tions yr where r2(yr)

�1� b3/2. For example, this would
be true for all yr 	 1 if b P r4/3. Resolution of such
details holds considerable promise in establishing the
detailed circumstances under which the similarity
between the temperature and velocity fields can be
expected to exist.

5.4. Characteristic lengths, as they depend on distance

from the wall

In this section, the small parameter r2 in (28) will be
neglected. Let ‘(b) denote the characteristic length in the
layer Lh

b, which will also be the order of magnitude of the
width of that layer. From (24), one sees that

‘ðbÞ ¼ Oðb�1=2Þ; ð29Þ
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and from (28), dyrm
db ¼ �Oðb�3=2Þ ðb ! 0Þ and integrating

in view of (29), yrm = O‘), i.e.

‘ðyrÞ ¼ OðyrÞ; ð30Þ

where now yr is a general location in the channel, and
‘(yr) is the characteristic length of the profiles of W
and T at the location yr. These relations are asymptotic
ones as b ! 0; this means that the location yr must cor-
respond to a parameter b which is sufficiently small.
Now interpret (30) in terms of the outer variable
g = r2yr (from (17)). Both ‘ and yr are to be scaled in
terms of g. That means that both are to be multiplied
by r2. Eq. (30) remains invariant, and one obtains

‘ðgÞ ¼ OðgÞ. ð31Þ

Again, this relation holds for places g in the channel
where Tb is maximal and b � 1. These place can be seen
to be close to the wall. In words, what is revealed is that
the characteristic length ‘ is asymptotically proportional
to the outer distance g from the wall, for small g.
6. Discussion

Fully developed thermal transport through a wall-
bounded turbulent flow with constant heat flux supplied
at the wall was investigated via scaling considerations in
coordination with observations based on DNS data. The
present results provide a description of the scaling
behaviors of the temperature and turbulent heat transfer
profiles that is remarkably complete, considering that
the point of departure is the averaged, therefore under-
determined, version of the thermal energy balance
equation.
Although the thermal problem has many features

formally in common with the classical fluid dynamical
problem of steady turbulent flow through a channel,
its additional independent parameter Pr brings an extra
degree of uncertainty, as well as allowing for distinct
phenomena. For example, the results of Fig. 2 clearly re-
veal that for Pes � 1 the molecular diffusion heat flux
dominates over the turbulent counterpart over the entire
channel. An analogous situation cannot exist in the
momentum field. Despite such differences, a clear quali-
tative picture emerges when one takes into account cer-
tain clear monotonic dependencies on the parameter,
Pes, as seen in DNS data. In particular, the existence
of a continuum of layers, a hallmark of classical turbu-
lent flow through a channel, is also seen here for large
Prandtl numbers. As a result, the existence, or nonexis-
tence, of logarithmic-type profiles is clarified. Among
other things, the monotone variation of the peak in
the turbulent thermal flux with Pes, known empirically,
is predicted by the present framework.
A theme running through the present analysis is that

considerable prior reasoning and certain conclusions
regarding the analogous pure fluid dynamical problem
can be taken over and used, with some modifications,
in the present context. In doing so, the principal small
parameter � = (d+)�1/2 in the former problem is replaced
by the parameter r in the latter, representing the (square
root of the) deviation of the scaled centerline tempera-
ture from the wall temperature, as it depends on Pes.
This gives rise to the temperature scaling in (7); it is dis-
tinct from the one traditionally employed. Lastly, as
with the velocity profile, direct analysis of the uninte-
grated form of the relevant governing equation reveals
that the origin of a logarithmic temperature profile is
independent of the classical inner/outer overlap ideas
[7,20]. In this regard it is worth noting that, instead,
the mathematical structure revealed herein provides the-
oretical justification for the classical distance from the
wall scalings often hypothesized on physical grounds.
Thus, justification comes about through the property
that each patch Lh

b of the scaling hierarchy has its width
and characteristic length asymptotically proportional to
the distance from the wall.
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